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Abstract

Forced convection heat transfer in fully developed laminar flows of power-law fluids in eccentric annular ducts is
computationally analyzed. With an insulated outer surface, the heating or cooling on the inner surface is modeled by
two fundamental boundary conditions — uniform axial heat flux (H1) and constant wall temperature (T) — commonly
encountered in thermal processing applications. Numerical solutions for the velocity and temperature distributions,
isothermal frictions factors, and Nusselt numbers for annular ducts of varying aspect ratios (0.2 <7* <0.8) and inner
core eccentricity (0 <&" <0.6) are presented for both shear-thinning (0.2<# < 1) and shear-thickening (1 < n<1.8)
fluids. Due to the geometric asymmetry of the eccentric annular cross-section, the flow tends to stagnate in the narrow
section and have higher peak velocities in the wide section. This induces greater non-uniformity in the temperature field,
and degradation in the average heat transfer coefficient. The nonlinear shear behavior of the fluid further aggravates the
flow and temperature maldistribution, which produces a significantly anomalous thermal-hydraulic per-
formance. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction =K"= (Kj;"*‘);} =, (1)
Thermal processing in a wide spectrum of industrial where it is evident that the apparent viscosity fi, is a
applications (biochemical, food, pharmaceutical, and function of the shear-rate. For shear-thinning or
personal hygiene products, to name a few) involves fluid pseudoplastic fluids, the flow behavior index n < 1, and
media that exhibit a viscous non-Newtonian behavior. for shear-thickening or dilatant fluids » > 1. In this
They have nonlinear shear-stress — shear-rate charac- model, # = 1 corresponds to a Newtonian fluid and the
teristics that, depending upon their chemistry, can be consistency K becomes the dynamic fluid viscosity.
shear-thinning or shear-thickening. Rheologically, they These fluids are invariably subject to a heat exchange
are a class of purely viscous, time-independent fluids process during either their preparation or transforma-
that can be modeled by the power-law type Ostwald-de tion to the end product, and the thermal processing is
Waele constitutive relationship [1]: often accomplished with the viscous non-Newtonian

media flowing through annular channels. Double-pipe
heat exchangers and cored-cylindrical extruders are two
examples, among other devices and applications (geo-
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Nomenclature

B dimensionless shape function, Eq. (3)
Br Brinkman number

dy hydraulic diameter, (r, — r;), m
(dp/dz) axial pressure gradient, Pa or N/m?

(dT./dz)  axial bulk temperature gradient, K/m

f Fanning friction factor, Eq. (12)

h heat transfer coefficient, W/m? K

H1 uniform axial heat flux but peripherally
constant wall temperature condition

k thermal conductivity, W/m K

K fluid consistency, Eq. (1)

n flow behavior index, Eq. (1)

Nu; Nusselt number based on hydraulic
diameter and heat transfer coefficient
at the inner cylinder wall, Eq. (14)

Pe Peclet number

Owi dimensionless wall heat flux on inner
cylinder, Eq. (16)

7 dimensional and dimensionless radial
coordinate, Fig. 1 and Eq. (2)

r radius ratio of annulus cross-section,
(ri/ro)

R shape function for outer cylinder, Fig. 1
and Eq. (3)

Re, Reynolds number based on hydraulic
diameter and generalized viscosity,
Eq. (11)

T.T dimensional and dimensionless
temperature, Eq. (6)

T uniform wall temperature condition

W, w dimensional and dimensionless axial
velocity, Eq. (5)

g, 8" dimensional and dimensionless inner
core eccentricity, Fig. 1 and Eq. (4)

7 shear-rate, Eq. (1)

[TRTA dimensional and dimensionless apparent
viscosity, Egs. (1) and (7)

Ay generalized viscosity, Eq. (11)

T shear-stress, Eq. (1), N/m?

Y angular coordinate, Fig. 1 and Eq. (2)

Subscripts

i pertaining to the inner cylinder wall

m bulk-mean or average quantity

o pertaining to the outer cylinder wall

w at the duct wall

coupled with the non-Newtonian fluid behavior, influ-
ence the flow and temperature fields considerably, and
the thermal-hydraulic performance deviates consider-
ably from that of Newtonian flows [2-5]. This affects the
product quality and thermal degradation of the process
fluids, particularly in food and polymer processing. To
design for and mitigate such conditions, precise results
for the fluid flow and heat transfer are needed, and these
are presented in this paper.

Forced convection in Newtonian flows in annular
channels has been investigated extensively in the liter-
ature [6,7]. Some of the earliest studies on eccentric
annuli by Piercy et al. [8], Stevenson [9], and Snyder
and Goldstein [10] have reported analytical solutions
for the laminar flow behavior and friction factors.
Cheng and Hwang [11], Trombetta [12], and Suzuki
et al. [13] have considered the heat transfer problem for
several different fundamental boundary conditions.
Summaries of these and other results are given by Shah
and London [6], and Shah and Bhatti [7]. In a more
recent extended computational study [14], the reported
results show a very strong influence of eccentricity on
the fully developed laminar flow velocity distribution,
fluid mobility, and temperature field in the annulus.
Even a small eccentricity of the inner core causes a
significant change in the flow distribution in the an-
nular gaps, with a large decrease in fluid throughput in
the narrow gap region.

The problem of laminar forced convection in purely
viscous, non-Newtonian fluid flows in both concentric
and eccentric annuli has received rather sparse attention
[15]. Capobianchi and Irvine [16] have considered heat
transfer to modified power-law liquids in concentric
annuli. Nusselt number and friction factor results for
both pseudoplastic and dilatant fluids (0.5 <n < 1.5) are
given for an insulated outer cylinder and constant heat
flux (H1) on the inner cylinder. Tanaka and Mitsuishi
[17] have investigated thermally developing laminar
mixed-convection in concentric annuli for power-law
fluids, and Patel and Ingham [18] have considered
Bingham plastic flows in vertical eccentric annuli. For
just the flow behavior problem in eccentric annuli, nu-
merical or approximate analytical solutions (based on a
thin-slit approximation for a small gap annulus) for
shear-thinning, Bingham plastic, and the three-constant
Sutterby model fluids are reported in several studies [19—
21]. Also, the flow of dilatant fluids in concentric annuli
have been analytically investigated by Fredrickson and
Bird [22].

Recognizing the need for relating the combined ef-
fects of fluid rheology and annular duct geometry
variations (aspect ratio and eccentricity) to the thermal-
hydraulic performance, numerical solutions for fully
developed laminar flow and heat transfer in viscous
power-law fluids are presented in this paper. With an
adiabatic outer wall, two fundamental thermal
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boundary conditions on the inner wall are considered:
axially uniform heat flux but peripherally constant wall
temperature (H1), and axially and peripherally uniform
wall temperature (T). These essentially model the two
end conditions of the spectrum encountered in thermal
processing equipment. Results for a wide range of
annulus aspect ratio (0.2<r*<0.8), inner core
eccentricity (0<¢&"<0.6), and power-law fluid flow
behavior index (0.2<n<1.8) are obtained, and their
influences on the overall thermal-hydraulic perfor-
mance are delineated.

2. Mathematical formulation

Constant property, hydrodynamically and thermally
fully developed, laminar flows of viscous power-law
fluids, with negligible viscous dissipation (Br < 1) and
axial conduction (Pe >> 1), in eccentric annuli are con-
sidered. The geometrical description and reference co-
ordinate system for the straight, constant cross-section
duct are schematically shown in Fig. 1. For computa-
tional ease, the eccentric annular geometry can be
mapped into a unit circle [23,24], and rendered dimen-
sionless by employing the following coordinate trans-
formation:

r=(r=7)/mBW). V= @

Here the radial coordinate is normalized by a dimen-
sionless shape function given by

180°

\_

y=0

Fig. 1. The cross-section geometry and coordinate system for
an eccentric annular duct.

BW) = [(rRw) — 1) /7]
12
- [1 — (1 — ) sin? Ip}
—& (1 —r")cosy —r", (3)
which is a continuous and twice differentiable function.

Also, the dimensionless radius ratio and eccentricity of
the annulus are, respectively,

= (Rm), & = [o/-)]. 4)
To describe the fluid flow and temperature fields, the

dimensionless velocity, temperature, and apparent vis-
cosity are defined as

w= o /{(- e}, )
T= [oc(Tw -7 / {dﬁv‘vm(dTm /dz)}]7 (6)
= Ry !

[(~dprazg k]

(G G520
(7)

Thus, with the introduction of these variables, the non-
dimensional form of the governing momentum and en-
ergy equations can be expressed in the transformed co-
ordinates as follows:

1
(rB+ V*)2

[ sl (G5 e)] [mtm]

(rB+r*) [(rB—o—r )yaZ—V:} +

(8)
1+r2(3/)2 er [ 1 Jeor
B? (rB—i—r*)2 B or? (rB—i—r*)2 @lﬁz
[ mler [ o0
(rB+r)* B |0ordy | B(rB+r*)
r 287 B’ or
+(rB+r*)2 (?_E) §+ST70’ (%2)
where
(w/wm)/ [4(1 - r*)z] for HI,

o= T pwnTe) [ [401 =] for T, 0)
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Egs. (8) and (9a), (9b) are subject to the following
boundary conditions:

T=0 at r=0, 0<y <2m, (10a)
(0T/on) =0 at r=1, 0<yY <2m (10b)

w=0,

w=0,

It may be noted that because p, = ¢(7) and the atten-
dant nonlinearity, the conservative form of the mo-
mentum equation is retained. Also, B’ = (dB/dy/) and
B’ = (d*B/dy*) in the above expressions, and (97/dn)
refers to the normal temperature gradient at the wall.
The detailed developments of Egs. (8) and (9a), (9b) are
outlined in [15].

For hydrodynamically fully developed flows of
power-law fluids, the Reynolds number can be defined
on the basis of a generalized viscosity [2,5,16] as

Rey = (pWmdh/lty) = (pvy, "dyl /K,

11
Fie = Ko/ dh)"". "

Thus, from a force balance across the flow cross-section
and its simplification, the hydraulic-diameter based
Fanning friction factor is given by

7= [(~dp/dz)dn [202] = [1/Res(2w7)].  (12)

Here, the dimensionless mean flow velocity can be cal-
culated from its usual definition as

1 2n
Wm:ﬁ/{) /0 wB(rB + r*) dys dr. (13)

For the fully developed temperature field, based on the
heat balance on the inner core surface of the annulus,
the Nusselt number is given by

(14)

Nty === (Owi/Tw) for T

iy { (14+r)/(4T,) for HI,
for the two different thermal boundary conditions. The
dimensionless representation of the bulk-mean fluid
temperature, and wall heat flux on the inner cylinder are,
respectively,

1 21
T :;z / / wIB(rB + r*) dy dr, (15)
(L =r)wm Jo Jo
_(=r) /hlal
Owi = ‘rt . Bar ).:Odlﬁ. (16)

Egs. (8)-(10b), (12) and (14) provide the complete
formulation for the fully developed velocity and
temperature fields, and the concomitant f and Nu in
eccentric annular ducts. The full derivation and
transformation of these expressions can be found in
[15].

3. Numerical methodology

Finite-difference methods, similar to those employed
by Prusa and Yao [23] and Manglik and Bergles [24],
have been used in this study to solve the governing
differential equations. The transformed computational
space of the eccentric annulus is divided into a mesh of
N, x Ny (radial x angular) nodes, with radial lines in-
tersecting circular arcs that are concentric with the outer
boundary ( = 1). The grid has uniform spacing of Ar
and Ay, respectively, in the radial and angular direc-
tions. Control-volume based, second-order accurate,
central differencing is employed to discretize the con-
servative form of the axial momentum transport equa-
tion. This, however, requires the calculation of the
apparent viscosity at half-node points, which is linea-
rized by taking an arithmetic mean of the values at two
adjacent nodes. The apparent viscosity itself is calcu-
lated by a central difference representation of Eq. (7).
Likewise, for the energy equation, central differencing is
employed for the radial and angular diffusion terms, and
the mixed derivative is also represented by a second-
order scheme based on double Taylor series expansions
[24]. The radial convection term is discretized by a
modified central-difference scheme that incorporates
upwind differencing with a correction term, where the
second-order accuracy is essentially achieved by using
both terms [24,25].

The application of all the Dirichlet boundary con-
ditions on w(r,) and T(r, V) is very straightforward.
For the adiabatic (zero wall heat flux) outer cylinder
surface condition for the energy equation, the temperature
gradient at this boundary (» = 1) can be expressed as

rB"? oT B oT
[(1+B(FB+F*))§_(rB+r*)@ - =0 (17)

Correspondingly, the local outer wall temperature is
calculated by a second-order discretized representation
of the temperature gradients. The first derivative in Eq.
(16) for calculating the average wall heat flux on the
inner cylinder is also represented by a three-point sec-
ond-order scheme.

The Gauss—Seidel point-iterative scheme, along with
SOR was employed to solve the finite-difference equa-
tions. Depending upon the values of r*, ¢*, and n, over-
relaxation factors in the range 1.0 < w < 1.4 were used.
For the temperature field solutions, however, it was
necessary to apply under-relaxation to the adiabatic wall
boundary condition and a factor of w = 0.8 was used.
The iterative convergence was established when the rel-
ative error in the dependent variables (w and 7)) between
two successive iteration sweeps was less than 1076
throughout the computational domain. Furthermore, all
numerical integrations were carried out using Simpson’s
rule (combination of 3/8 and 1/3 rules).



R.M. Manglik, P. Fang | International Journal of Heat and Mass Transfer 45 (2002) 803-814 807

The accuracy of the numerical solutions was estab-
lished by successive grid refinement, and comparing the
results with those reported in the literature for a few
limited cases. For Newtonian fluid flows (n = 1) in both
concentric and eccentric ducts, as shown elsewhere
[14,26,27], there is excellent agreement (<0.5% maxi-
mum deviation) between the present computations and
other numerical and experimental results [6-8,27]. Fur-
thermore, as shown in the next section, the computed
f - Re and Nu;y, for concentric annuli and power-law
fluids with 0.5<n< 1.5 are in good agreement (<0.5%
deviation) with those of Capobianchi and Irvine [16]. All
of these results were obtained using a N, x Ny, = 36 x 61
grid, and additional refinement produced negligible
change in the computed values [15].

4. Results and discussion

Numerical results for constant property, fully devel-
oped forced convection in laminar flows of viscous
power-law fluids in eccentric annuli are presented in the
ensuing sections. A wide range of the duct geometry
(0.2<r*<0.8 and 0 <¢* <0.6), for both shear-thinning
(0.2<n < 1) and shear-thickening (1 < n < 1.8) flows, is
considered. The results highlight the influences of the
duct eccentricity, flow behavior index, and the inner wall
thermal conditions (H1 and T boundary conditions) on
the velocity and temperature distributions, and the

overall thermal-hydraulic performance as determined by
the isothermal friction factor and Nusselt number.

4.1. Fluid flow behavior

The effects of inner core eccentricity ¢* and the flow
behavior index n on the axial velocity distribution in a
typical annular channel of »* = 0.5 are evident in Fig. 2.
The flow behavior in the widest ( = 180°) and nar-
rowest (i = 0°) sections of a concentric (¢* =0) and
two eccentric (¢* = 0.2 and 0.6) annuli is depicted. Rel-
ative to Newtonian flows in a concentric duct, where a
parabolic velocity profile is obtained, shear-thinning (or
pseudoplastic) fluids have a flat and more uniform
velocity distribution, particularly with decreasing values
of n. Dilatant (or shear-thickening) fluids, on the other
hand, exhibit a conical profile with higher maximum
velocity, and the peak velocity of the conical distribution
increases with n. These differing flow behaviors get more
pronounced with increasing eccentricity. While a more
uniform distribution is obtained in a given section of the
channel with shear-thinning fluids, the eccentricity of the
duct causes significant azimuthal flow maldistribution.
With increasing ¢*, the fluid mobility is considerably
reduced in the narrowest section. In fact, as seen in Fig.
2, larger eccentricity coupled with higher fluid pseudo-
plasticity (n — 0.2) makes the flow in the narrowest
section almost stagnant, and the bulk fluid gets
“squeezed” through the wider sections with higher peak

2.0 T T T T T T
I r¥=0.5 -= n=18
e =14 4
:00 n
L 4 — n=10
L '_v'\ """ n=0.6 4
//’/ \\\\ —— n=02
1.5 1 7 \

®) ‘ oy

Fig. 2. Radial distribution of axial velocity (w/wp) and its variation with ¢* and » in an annulus with »* = 0.5: (a) in the widest gap or

Y = 180°, and (b) in the narrowest gap or ¥ = 0°.
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velocities. Contrastingly, dilatant fluids have relatively
greater mobility azimuthally around the flow cross-sec-
tion, and the peak velocities increase with 7.

A more complete picture of the influence of increas-
ing pseudoplasticity (n — 0.2) or dilatancy (n — 1.8),
and cross-section aspect ratio (0.2 <r*<0.8) of the ec-
centric annulus are depicted in the isovelocity (w/wy,)
contours graphed in Figs. 3 and 4. As seen in Fig. 3,
even though the velocity profile gets locally more uni-
form in the radial distribution with decreasing #, there is
larger azimuthal variation in the flow due to the pres-
ence of an eccentric core in an otherwise circular outer
duct of the annuli. In a concentric annulus (¢* = 0) or a
circular tube (+* = 0), however, the flow would attain a
uniform plug-like distribution as » — 0 [1,2,15]. In the
case of shear-thickening fluids, which produce conical
velocity profiles with somewhat non-symmetric distri-
butions in the radial direction, the presence of an ec-
centric core tends to make the flow more uniform
azimuthally. This reduces the flow stagnation in the
narrow section of the channel in comparison with that in
Newtonian and pseudoplastic fluid flows. Furthermore,
the effects of varying radius ratio are seen in Fig. 4,
where isovelocity contours for both pseuodoplastic
(n = 0.5) and dilatant (n = 1.5) fluids in eccentric annuli
with ¢* = 0.2, and r* = 0.2, 0.5, and 0.8 are presented.

Fig. 3. Variations in the axial velocity (w/wy,) distribution with
n for fully developed laminar flows in an annulus with »* = 0.5
and & = 0.6.

rr=0.2

Fig. 4. Effect of »* and n on the fully developed laminar axial
velocity (w/wp,) distribution in eccentric annuli with ¢ = 0.2.

Once again, even a small inner core eccentricity is seen to
cause large flow maldistribution around the channel
cross-section, irrespective of n and r*, with relatively
more pronounced non-uniformities in smaller radius
ratio ducts.

The computed values of isothermal friction factors
for fully developed laminar flows in eccentric annuli with
™ =0.2,0.5 and 0.8, 0<¢&*<0.6, and 0.2<n< 1.8 are
listed in Table 1. Also included are the numerical results
of Capobianchi and Irvine [16] for ¢ =0, and
0.5 <n< 1.5, and the analytical solutions for Newtonian
fluids (n = 1) for 0.2 <»* < 0.8, and 0 < &* < 0.6 reported
by Piercy et al. [8]. The excellent agreement between
them is clearly evident. More importantly, the f - Re,
values in Table 1 highlight the anomalous flow behavior
of viscous power-law fluids in eccentric annuli. As would
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809

Isothermal friction factor (f - Re,) results for fully developed laminar flows of shear-thinning (pseudoplastic) and shear-thickening
(dilatant) fluids in eccentric annuli

* *

r & n
0.2 0.4 0.5 0.6 0.8 1.0 1.2 1.4 L5 1.6 1.8
02 0 37950 61481  7.7196 9.6667 14.987  23.100 35432 54207  66.997 82.769 126.18
(173 (9.66) (14.99) {23.088})*  (35.44) (54.22) (67.02)
0.1 37875 61319 7.7685 9.5994 14.848  22.837 34987 53465 66.044 81.549 124.21
[22.829]¢
0.2 37768  6.0423  7.5423 9.3835 14436  22.102 33727 51359 63338  78.082 118.56
[22.093]
0.4 3.6401  5.6620 69931 8.6203 13.032  19.648 29.562 44421 54432 66.684 100.02
[19.641]
0.6 33687 51417 62840 7.6622 11349  16.764 24725 36436 44221  53.664  79.009
[16.760]
05 0 3.8369 63122 7.9395 9.9497 15450  23.811 36.538  55.899  69.086  85.352 130.14
(7.95) (995 (1545 {23.813}*  (36.54) (55.92) (69.12)
0.1 38168 62567  7.8600 9.8307 15.248  23.480 36.000  55.031 67.983  83.953 127.90
[23.481]
0.2 37608  6.0610  7.5978 9.4904 14.675  22.542 34474 52565 64.852 79.983 121.52
[22.541]
0.4 34030 54141 67443 83734 12.804  19.459 29.446 44427 54524  66.889 100.55
[19.458]
0.6 3.0216  4.6996 57909 7.1147 10.667  15.909 23461 35041 42727 51.838  76.574
[15.909]
08 0 3.8483 63488  7.9966 10.023 15557  23.978 36.794 56292 69.569  85.948 131.105
(8.00) (10.01) (15.56) {23.980}*  (36.80) (56.31)  (69.60)
0.1 3.8280 62679  7.8880 9.8767 15336  23.626 36231 55391  68.429  84.507 128.74
[23.627]
0.2 3.6554  6.0146  7.5725 9.4819 14711  22.630 34635 52834 65192 80.412 122.19
[22.631]
0.4 3.1958 52474 65933 82342 12.691  19.367 29.377 44390 54504  66.893 100.62
[19.367]
0.6 27684 44499 55415 6.8624 10405  15.622 23309 34.641 42181 51.334 75918
[15.622]

#Theoretical results listed by Shah and London [6].

®Values in parenthesis are the computational results of Capobianchi and Irvine [16].
“Values in square brackets are the analytical results of Piercy et al. [8].

be expected, in a given annular duct, pseudoplastic flows
have lower friction factors than those for a Newtonian
fluid; dilatant fluids, on the other hand, have much
higher friction factors because of their shear-thickening
behavior. The combined influence of r*, ¢, and n on
f - Re, is somewhat more complex. In any r* annulus,
[ - Re, is seen to decrease monotonically with increasing
¢ for Newtonian (n = 1), pseudoplastic (0.2<n < 1),
and dilatant (1 < n< 1.8) fluids. However, while 1 - Re,
increases with * in concentric and moderately eccentric
annuli, this trend is reversed in ducts with inner core
eccentricities greater than a critical value. For New-
tonian fluids (n = 1), the critical eccentricity is approx-
imately ¢* ~ 0.34, when f - Re, values are the same for
all »* (estimated by graphical interpolation), and this
decreases when n < 1 and increases when n > 1. The
critical eccentricity values for shear-thinning fluids with

n = 0.8 and 0.2, for example, are &¢* ~ 0.3 and 0.12, re-
spectively. Likewise, for shear-thickening fluids with
n = 1.4 and 1.8, respectively, are &¢* ~ 0.4 and 0.45.

4.2. Heat transfer behavior

The effects of eccentricity and flow behavior index on
the temperature distribution in fully developed laminar
forced convection in eccentric annuli are shown in Figs.
5 and 6. Isothermal contours in typical shear-thinning
(n=0.5) and shear-thickening (n =1.5) flows in an
annulus with »* = 0.5 but different inner core eccen-
tricity and the H1 boundary condition are presented in
Fig. 5. The corresponding temperature distributions
with the T boundary condition are shown in Fig. 6. The
outer wall of the annulus is adiabatic in all cases, and the
reference Newtonian flow (n=1) results are also
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Fig. 5. Effect of n and ¢* on the fully developed temperature
(T/Ty) distribution in annuli with »*=0.5 and the HI1
boundary condition on the inner surface.

included in both figures. Relative to a concentric annu-
lus, the presence of an eccentric inner core is seen to
induce large non-uniformities in the temperature field.
Because of the flow stagnation in the narrow section and
higher throughput in the wider section of the annulus,
the thermal asymmetry increases with eccentricity. This
promotes significant temperature stratification in the
narrow flow region, and the influence is much larger
with the T condition on the inner surface. However, ir-
respective of the boundary condition (H1 or T), even a
small center-body eccentricity gives rise to sharp differ-
ences in the local temperature gradients around the an-
nulus cross-section.

In concentric annuli, shear-thinning fluids with their
plug-like flow behavior tend to have slightly sharper wall

n=1.5

Fig. 6. Effect of n and ¢* on the fully developed temperature
(T/T) distribution in annuli with »* = 0.5 and the T boundary
condition on the inner surface.

temperature gradients. Shear-thickening fluids, on the
other hand, have a more conical flow behavior which
somewhat reduces the temperature gradient near the
wall. This is also observed in circular and many other
axisymmetric straight ducts [2-5]. However, this trend in
the temperature field is significantly altered in eccentric
annuli, where the inner core eccentricity promotes con-
siderable asymmetry and anomaly in both the flow and
temperature fields. In fact, in dilatant fluids, which have
higher peak velocities relative to pseudoplastic fluids,
higher mid-plane temperatures are obtained even with a
moderately eccentric inner core, which increase with
eccentricity. The mid-plane temperatures are consider-
ably lower all around the annulus in shear-thinning
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rr=0.8

Fig. 7. Effect of »* and n on the fully developed temperature
(T/T,) distribution in eccentric annuli with ¢ = 0.2 and the H1
boundary condition on the inner surface.

flows, and there is relatively greater thermal stratifica-
tion. This behavior is more pronounced with the T
condition, though with both H1 and T conditions the
thermal stagnation and inhomogeneity increases with r*,
and this is clearly depicted in Figs. 7 and 8.

Given the fully developed temperature distributions,
the corresponding Nusselt numbers, Nu; iy and Nu; r for
the H1 and T boundary conditions, respectively, are
tabulated in Tables 2 and 3, for both shear-thinning and
shear-thickening fluids. In concentric (¢* = 0) annuli,
the computed values for the H1 condition (Table 2) are
seen to be in excellent agreement (within £+1%) with the
numerical results reported by Capobianchi and Irvine
[16]. Furthermore, for both the H1 and T conditions,

rr=0.8

Fig. 8. Effect of »* and n on the fully developed temperature
(T/T) distribution in eccentric annuli with ¢* = 0.2 and the T
boundary condition on the inner surface.

shear-thinning flows have an enhanced heat transfer
performance, whereas shear-thickening flows lead to
deterioration in heat transfer. With » = 0.2 and the H1
boundary condition on the inner surface, for example,
and depending upon the aspect ratio r*, Nu is about 2.8—
4.5% higher than that for Newtonian flows (n = 1). For
n = 1.8, on the other hand, Nu is 1.3-1.5% less than that
for n = 1. This is consistent with the performance ob-
served in circular tube flows [4]. Also, the heat transfer
coefficients with the T condition on the inner wall are
lower (Nujr < Nujy;) by as much as 4.6-9.9%
(08=r>02).

For laminar fully developed flows in eccentric
annuli, however, the results in Tables 2 and 3 clearly
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Nusselt number (Nuiy;) results for fully developed laminar flows of shear-thinning (pseudoplastic) and shear-thickening (dilatant)
fluids in eccentric annuli

n

0.2 0.4 0.5 0.6 0.8 1.0 12 1.4 15 1.6 1.8

02 0 86771 85551  8.5434  8.5255 84806 84373 83989 83664  8.3519 83384  8.3140
(8.618)7  (8.598)  (8.553) {8.499}b  (8.471) (8.439)  (8.424)

0.1 83408 82811 82391 82038 81509 8.1135  8.0847  8.0616  8.0515 8.0421  8.0251

0.2 77253 74836 74238 73845 73426  7.3238 73145 73096  7.3078  7.3063  7.7037

04 55473 55678 55712 55731 55768  5.5809 55912  5.6024  5.6080 5.6134  5.6237

0.6 43661 43930 43954 43980  4.4008  4.4043  4.4083 44129 44151 44176 4.4224

05 0 63760 63184 62895 62629 62175 61815 61528  6.1296  6.1196 6.1104  6.0942
(6.293)  (6.266)  (6.220) {6.181}>  (6.156)  (6.134)  (6.124)

0.1 59313 58025 57932 57929 57927 57927 57900  5.7862  5.7841  5.7818  5.7772

0.2 45859 47040 47546 48012  4.8769 49315  4.9705 49987  5.0099 50196  5.0354

04 29381 3.1097  3.1700 32232 33119  3.3817 34367 34805 34990 3.5157  3.5444

0.6 23490 24133 24386 24631 25077  2.5462  2.5787  2.6062  2.6182  2.6293  2.6488

08 0 58324 57824 56915 56617 56162 55832 55582 55389  5.5307 5.5233  5.5107
(5.689)  (5.659)  (5.613) {5.578}% (5.556) (5.536)  (5.528)

0.1 47727 50549 51077  5.1414 51770 51924  5.1990 52018 52024 52026  5.2025

02 3258  3.8560  4.0031  4.1106 42523 43382 43944 44336 44490 4.4623  4.4840

04 20088 23620 24813 25798  2.7290  2.8340 29105 29682 29920 3.0132  3.0492

0.6 1.5538 17403  1.8069  1.8652 19590  2.0291  2.0826  2.1243  2.1418 2.1576  2.1848

# Computational results of Capobianchi and Irvine [16] are given in parentheses.
®Results listed by Shah and London [6] that are based on the theoretical solutions of Lundberg et al. [28].

Table 3

Nusselt number (Nu;t) results for fully developed laminar flows of shear-thinning (pseudoplastic) and shear-thickening (dilatant) fluids
in eccentric annuli

n

0.2 0.4 0.5 0.6 0.8 1.0 1.2 1.4 L5 1.6 1.8
02 0 81209 81187 81093 81005 8.0860  8.0651  8.0436  8.0241  8.0151  8.0065  7.9905
0.1 7.6700  7.5998  7.5648  7.5401  7.5123 74987  7.4904  7.4840  7.4812 74784  7.4730
02 67826  6.5660  6.5244 65011 64952 64861 64668 64608 64574 64529  6.4491
04 48784 48816  4.8840  4.8868  4.8958 49068 49178  4.9286  4.9337  4.9386  4.9427
0.6 39393 39699 39761 39806  3.9868  3.9915  3.9956  3.9994  4.0012  4.0031  4.0066
0.5 0 5768 57626 57621 57576 57450 57316 57195 57088 57040  5.6995  5.6912
{5.738)
0.1 45670 45736 45929  4.6180 46677 47059 47331 47528 47606 47673  4.7781
02 34163 3.5212  3.5666  3.6095  3.6826 37386 3.7809  3.8131  3.8264  3.8381  3.8578
04 23657 24669 25033 2.5359  2.5916  2.6361  2.6716 27002 27122 27231  2.7419
0.6 19739 20170  2.0338 20499  2.0790  2.1039  2.1250  2.1426  2.1504  2.1575  2.1700
08 0 51134 51104 51051 50993 50881 50785 50702 50634 50604 50576  5.0528
0.1 3.0652 34307 3.5196  3.5881  3.6819 37409  3.7806  3.8089  3.8202  3.8301  3.8464
02 21084 24716  2.5701  2.6485 27616  2.8369  2.8897  2.9285 29443  2.9585  2.9816
04 14195 16111  1.6750 17279  1.8137  1.8745 19193 19535  1.9676  1.9803  2.0018
0.6 1.1498 12549 12923  1.3257  1.3804 14216 14529 14772 14874 14966 15123

#Results listed by Shah and London [6] that are based on the theoretical solutions of Lundberg et al. [28].

demonstrate that the inner core eccentricity promotes
considerably anomalous heat transfer characteristics.
Because a relatively small eccentricity causes a reduction
in the flow mobility around the annulus for shear-thin-
ning fluids (n < 1), there is a significant decrease in their

convective heat transfer coefficient. Conversely, the rel-
atively increased peak flow mobility in shear-thickening
fluids is seen to produce higher heat transfer coefficients.
This is observed for both H1 and T conditions on the
inner surface of the annuli, and the influence of the non-
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symmetric geometry is more pronounced in ducts with
r* > 0.5. For instance, in dilatant flows (n > 1), Nujp is
greater than that for Newtonian (n = 1) and pseudo-
plastic (n < 1) fluids even in a nominally eccentric
(¢* = 0.1) annulus with 7* > 0.5. A similar trend is seen
in the Nu;t results, and with both H1 and T conditions
Nu increases with n. This behavior is contrary to that
found in axisymmetric channels, such as circular, con-
centric annular, parallel-plate, and square ducts [2-
4,16,29], where Nu for n < 1 is higher than that for
n = 1. Clearly the non-symmetric eccentric annuli ge-
ometry substantially alters the convection heat transfer
characteristics.

A limiting condition is described by the case where
¢ — 1 and r* — 1. The virtual fluid immobility in the
very narrow gaps of such an annulus would result in
negligible convective effects, and the heat transport
would essentially be due to diffusion or conduction
[6,13,15]. The large Pe assumption of this study would
not be valid, and, in fact, local axial conduction may
have some influence in the narrow gap regions of any »*
annulus with ¢ — 1. While this limit has no practical
relevance to heat exchanger design, it relates to some
other applications (journal bearings, for example) and
any extrapolation of the results in this study; caution
must be exercised for the latter.

5. Conclusions

From the computational analysis of fully developed,
laminar constant-property forced convection in power-
law fluids in eccentric annular duct of varying aspect
ratio (0.2 <»* <0.8), eccentricity (0 < &* <0.6), and flow
behavior index (0.2 <n < 1.8) considered in this study,
the following observations can be made:

1. The eccentricity of the channel causes the velocity
distribution to have a sharper profile with higher
gradients and peak velocities in widest gap of the an-
nulus; the flow tends to become immobile in the nar-
rowest gap. For shear-thinning fluids (n < 1), flatter
plug-like profiles are obtained, whereas in shear-thick-
ening fluids (n > 1), the profiles are much sharper and
almost conical. With increasing fluid dilatancy (n — 1.8)
there is significantly higher azimuthal fluid mobility
around the flow cross-section. In highly pseudoplastic
fluids (» — 0.2), on the other hand, the flow is almost
stagnant in the narrowest section of the duct.

2. In general, the friction factor decreases with in-
creasing eccentricity. Shear-thinning flows have lower
f - Reg values than in Newtonian fluid flows, but shear-
thickening flows have much higher frictional loss. For a
given 7, f - Re, decreases monotonically with increas-
ing ¢* for all values of n, though the relative decrease in
friction factors for n > 1 fluids is much greater than for
n<1 fluids. Furthermore, while f - Re, increases with

increasing * in concentric and moderately eccentric
annuli, the trend is reversed in ducts with eccentricities
greater than a critical value; typically, these critical ec-
centricities are & ~ 0.34 for n =1, 0.3 and 0.12 for
n=0.8 and 0.2, respectively, and 0.4 and 0.45 for
n = 1.4 and 1.8, respectively.

3. Reflecting the fluid flow behavior and associated
rheology, the peak mid-plane temperatures are lower
when n < 1, and much higher when » > 1. This trend is
accentuated with increasing eccentricity. The Nusselt
numbers for flows in concentric annular ducts (for both
H1 and T conditions) decrease as n increases. However,
with increasing &*, this trend is reversed as the effects of
duct geometry are more pronounced and they dominate
over the influence due to the non-Newtonian nature of
the fluid. Even a moderately eccentric annulus has an
anomalous thermal performance, which is contrary to
that usually observed in singly connected, constant
cross-section straight ducts.
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